4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
Bioclone Inc(授权代理)
主营:专注于生物磁分离技术的公司
咨询热线电话
4000-520-616
当前位置: 首页 > 产品中心 > > Bioclone/2.5 μm BcMag™ Cleavable Tosyl-Activated Magnetic Beads/150 mg/IR103
商品详细Bioclone/2.5 μm BcMag™ Cleavable Tosyl-Activated Magnetic Beads/150 mg/IR103
Bioclone/2.5 μm BcMag™ Cleavable Tosyl-Activated Magnetic Beads/150 mg/IR103
Bioclone/2.5 μm BcMag™ Cleavable Tosyl-Activated Magnetic Beads/150 mg/IR103
商品编号: IR103
品牌: Bioclone Inc
市场价: ¥7500.00
美元价: 4500.00
产地: 美国(厂家直采)
公司:
产品分类: 其他
公司分类:
联系Q Q: 3392242852
电话号码: 4000-520-616
电子邮箱: info@ebiomall.com
商品介绍

BcMagTM Cleavable Tosyl-Activated Magnetic Beads are uniform magnetic beads grafted with tosyl functional groups on the surface.). The tosyl-activated magnetic beads can efficiently conjugate ligands containing primary amine in either aqueous or organic solvents (30% DMF) without introducing any charge. Since the active tosyl group is linked with the beads through a built-in cleavable disulfide linker (Fig.1), after affinity purification, reducing agents such as DTT or β-mercaptoethanol can cleave and separate the target molecule-ligand complex from the beads. The cleavable tosyl magnetic beads are ideal matrices for conjugating large-size proteins or small peptides.

Structure and workflow of Cleavable tosyl-activated beads

The Tosyl-Activated magnetic resins are an ideal choice for covalently attaching antibodies, peptides, complete proteins, and functional enzymes to the surface. The immobilized beads are widely used in the Immunoprecipitation of proteins and protein complexes due to their low background and covalent binding of antibodies to the bead surface.

The Tosyl Activated magnetic resins coupling reaction is carried out at 37°C, and pH ranges from neutral to high. We advocate coupling at pH 8.5-9.5, but coupling with pH labile ligands can be done in an alternate buffer at pH 7.4.

The unique dry form eliminates the need for acetone solvent storage or removal and disposal. Furthermore, because the dry resin concentrates the sample as it swells, lowering the volume of the starting material and resulting in highly effective ligand immobilization, it is perfect for coupling reactions with dilute materials.

Workflow

The Beads perfectly as affinity resin for affinity purification to refine molecules, cells, and parts of cells into purified fractions. After conjugation with ligands, add the beads to a sample containing the target molecules, then mix, incubate, wash and elute the target molecules.

Workflow of magnetic beads for affinity purification

Features and Advantages

Pre-activated and ready-to-use

Cleavable built-in disulfide bond allowing the ligand-target molecule complex separated from the beads

Easy to use

No charge remains on the surface after coupling

Stable covalent bond with minimal ligand leakage

Produces reusable immunoaffinity matrix

Low nonspecific binding

Immobilize 1-10 mg protein or 0.1-1 mg peptide/ml beads

Applications: Immunoprecipitation; Purification for Antibodies, Proteins/Peptides, DNA/RNA

PROTOCOL

Note:

This protocol can be scaled up as needed. We strongly recommended titration to optimize the number of beads used for each application.

Avoid reducing agents, tris, or other buffers containing primary amines or other nucleophiles because these will break the disulfide linker or compete with the intended coupling reaction. But the wash or storage buffers can have amino or carboxyl groups.

Materials Required

1.

Magnetic Rack (for manual operation)

Based on sample volume, the user can choose one of the following Magnetic Racks:

– BcMag™ Magnetic Rack-2 for holding two individual 1.5 ml centrifuge tubes (Cat. No. MS-01);

– BcMag™ Magnetic Rack-6 for holding six individual 1.5 ml centrifuge tubes (Cat. No. MS-02);

– BcMag™ Magnetic Rack-24 for holding twenty-four individual 1.5-2.0 ml centrifuge tubes (Cat. No. MS-03);

– BcMag™ Magnetic Rack-50 for holding one 50 ml centrifuge tube, one 15 ml centrifuge tube, and four individual 1.5 ml centrifuge tubes (Cat. No. MS-04);

– BcMag™ Magnetic Rack-96 for holding a 96 ELISA plate or PCR plate (Cat. No. MS-05).

2.

Coupling Buffer: 0.1 M sodium phosphate, pH 7.4

Note:

The coupling buffers should be minimal ionic strengths and should not contain any amino (e.g., Tris or glycine). But the wash or storage buffers can have amino or carboxyl groups.

Water-insoluble ligands can be conjugated in 30% organic solvent (30% DMF) with a coupling buffer.

3.

Blocking Buffer: PBS pH 7.4 with 0.5% (w/v) BSA

4.

Washing buffer: PBS pH 7.4 with 0.1% (w/v) BSA.

A.

Magnetic Beads Preparation

1.

Prepare 3% magnetic beads with 100% isopropanol (30 mg/ml). Note: Store the unused beads in acetone solution at 4°C. It is stable for over a year.

2.

Transfer 100 μl (3mg) magnetic beads to a centrifuge tube.

3.

Place the tube on the magnetic rack for 1-3 minutes. Remove the supernatant while the tube remains on the rack. Remove the tube from the rack and resuspend the beads with 1 ml coupling buffer by vortex for 30 seconds.

4.

Repeat step 3 two times.

5.

Remove the supernatant, and the washed beads are ready for coupling.

Note: Once rehydrated, use the bead as soon as possible due to the stability of the functional group.

B.

Protein Coupling

1.

Prepare 100 μl of protein solution (0.5-1mg/ml) or peptide solution (200 μmoles/ml) with coupling buffer.

Note: Coupling efficiencies vary from ligand to ligand. The user should empirically optimize the concentration of the ligand.

2.

Add the protein or peptide solution to the washed beads and mix well by vortex or pipette.

3.

Incubate the reaction 24-48 hours at 20-25°C or 48-72 hours at 4°C with continuous rotation.

4.

Wash beads three times with 1 ml washing buffer.

5.

Add 1ml blocking buffer to the beads and incubate at room for 1 hour or at 4 °C overnight.

6.

Wash beads 4-6 times with 1 ml PBS buffer.

7.

Resuspend the beads in PBS buffer with 0.01% azide (w/v) to desired concentration and store at 4°C until use. Do not freeze.

C.

General Affinity Purification Protocol

Note: 

This protocol is a general affinity purification procedure. Designing a universal protocol for all protein purification is impossible because no two proteins are precisely alike. The user should determine the optimal working conditions for purifying the individual target protein to obtain the best results.

Avoid reducing agents in binding and washing buffers.

We strongly recommended titration to optimize the number of beads used for each application based on the amount of the target protein in the crude sample. Too many magnetic beads used will cause higher backgrounds, while too few beads used will cause lower yields. Each mg of magnetic beads typically binds to 10-20 μg of the target protein.

1.

Transfer the optimal amount of the beads to a centrifuge tube. Place the tube on the magnetic rack for 1-3 minutes. Remove the supernatant while the tube remains on the rack.

2.

Remove the tube and wash the beads with 5-bed volumes of PBS buffer by vortex for 30 seconds. Leave the tube at room temperature for 1-3 minutes. Place the tube on the magnetic rack for 1-3 minutes. Remove the supernatant while the tube remains on the rack.

3.

Repeat step 2 two times.

4.

Add washed beads to the crude sample containing the target protein and incubate at room or desired temperature for 1-2 hours (Lower temperatures require longer incubation time).

Note: Strongly recommended to perform a titration to optimize incubation time. More prolonged incubation may cause higher background.

5.

Extensively wash the beads with 5-beads volumes of PBS buffer or 1M NaCl until the absorbance of eluting at 280 nm approaches the background level (OD 280 < 0.05).

Note: Adding a higher concentration of salts, nonionic detergent, and reducing agents may reduce the nonspecific background. For example, adding NaCl (up to 1-1.5 M), and 0.1-0.5% nonionic detergents such as Triton X100 or Tween20 to the washing buffer.

6.

Elute the target protein by appropriate methods such as low pH (2-4), high pH (10-12), high salt, high temperature, affinity elution, or boiling in SDS-PAGE sample buffer, or reducing agents.

7.

Cleave the Disulfide Bond

Note: Due to conformational variation from ligands to ligands, the user should determine the optimal working conditions such as reducing agent, pH, and temperature for cleaving the disulfide bond of individual ligands. The following is an example of cleaving conjugated GFP from the beads.

Incubate the magnetic beads (30mg/ml) in either 140 mM β-mercaptoethanol or 5mM DTT (Dithiothreitol)

a. 100 mM Tris-HCl, pH 8.0, 50 mM EDTA, 140 mM β-mercaptoethanol for 2 hours to overnight at room temperature or 98°C for 5 minutes.

b. 100 mM Tris-HCl, pH 8.0, 50 mM EDTA, 5mM DTT for 2 hours to overnight at room temperature or 98°C for 5 minutes.

Learn More

Instruction Manual

MSDS

Related Affinity Magnetic Beads  →
品牌介绍
Bioclone的用于学术研究和治疗应用的重组蛋白/ DNA的数量已大大增加。然而,成功的重组蛋白表达取决于许多因素,例如密码子偏好性,RNA二级结构,异源表达系统中的GC含量。越来越多的实验结果证明,与预优化相比,取决于不同的基因,表达水平显着提高,从两倍提高到一百倍。Bioclone开发了一个独特的专有技术平台,并生成了超过14,000个人工合成的,经过密码子优化的cDNA / DNA克隆(克隆在大肠杆菌表达载体中,图1)和重组蛋白(在大肠杆菌酵母中生产)。Bioclone为所有cDNA克隆和重组蛋白生产提供即用型和基于客户的服务。特别设计和合成了数十万种重组蛋白和密码子优化的cDNA (DNA开放阅读框)。  密码子优化的cDNA / DNA:    产生更高产量的重组蛋白。将cDNA / DNA 克隆克隆到具有6x His -tag的大肠杆菌表达载体中,可立即用于重组蛋白生产。可以使用作为验证的RNAi的功能由于在其〜30%差的RNAi的援助cDNA序列时相比原的cDNA / DNA 。Bioclone 还提供客户服务克隆中的cDNA插入NY 所需的客户向量小号。重组蛋白:重组蛋白C 在N末端或C末端具有6x His-tag重组蛋白P roduced在大肠杆菌或小号F9昆虫细胞。  provid 我纳克准备使用的重组蛋白和p rotein点播服务的所有cDNA克隆。通过SDS-PAGE 测定的重组蛋白纯度> 90%。ř ecombinant蛋白应用:Western印迹,ELISA 或可以用于其它应用。  cDNA克隆和重组蛋白包括:我nfection疾病抗原(病毒,细菌,寄生虫,细菌毒素),抗过敏的蛋白质,细胞因子,   激酶,磷酸酶,信号转导,   干细胞和发展,神经科学, 药物   metabollism,普通的病,转录因子,癌症和更重组蛋白质和克隆是g 还是机翼.......